Candidate events in the CMS Standard Model Higgs Search using 2010 and 2011 data
Real CMS proton-proton collision events in which 4 high energy muons (red lines) are observed. The event shows characteristics expected from the decay of a Higgs boson but is also consistent with background Standard Model physics processes. (Image: CERN)

Le mécanisme de Brout-Englert-Higgs

Dans les années 1970, les physiciens ont compris qu’il y avait des liens étroits entre deux des quatre forces fondamentales, la force faible et la force électromagnétique. Ces dernières peuvent être décrites dans le cadre d’une théorie unifiée, qui constitue la base du Modèle standard. On entend par « unification » le fait que l’électricité, le magnétisme, la lumière et certains types de radioactivité sont tous des manifestations d’une seule et même force appelée force électrofaible.

Les équations fondamentales de la théorie unifiée décrivent de façon correcte la force électrofaible et ses particules porteuses de force associées, à savoir le photon et les bosons W et Z. Mais il y a un hic. Dans ce modèle, toutes ces particules paraissent dépourvues de masse. Or si le photon a effectivement une masse nulle, nous savons que les particules W et Z ont une masse non nulle, équivalente à près de 100 fois la masse d'un proton. Heureusement, les théoriciens Robert Brout, François Englert et Peter Higgs ont proposé une théorie qui devait résoudre ce problème. Ce que nous appelons à présent mécanisme de Brout-Englert-Higgs donne une masse au W et au Z lorsqu'ils interagissent avec un champ invisible, dit « champ de Higgs »,  présent dans tout l’Univers.

higgsjuly4,seminar,Milestones,Higgs Boson Discovery
[CHANGE TO FRENCH] At CERN on 4 July, the ATLAS and CMS collaborations present evidence in the LHC data for a particle consistent with a Higgs boson, the particle linked to the mechanism proposed in the 1960s to give mass to the W, Z and other particles. (Image: Maximilien Brice/Laurent Egli/CERN)

Juste après le Big Bang, le champ de Higgs était nul, mais, lorsque l’Univers a commencé à se refroidir, et que la température est tombée en dessous d’une certaine valeur critique, le champ s’est développé spontanément, si bien que toutes les particules interagissant avec ce champ ont acquis une masse. Plus une particule interagit avec ce champ, plus elle est massive. Les particules comme le photon, qui n’interagissent pas avec le champ, se retrouvent totalement dépourvues de masse. Comme tous les champs fondamentaux, le champ de Higgs est associé à une particule, le boson de Higgs. Le boson de Higgs est la manifestation visible du champ de Higgs, un peu comme la vague à la surface de la mer.

L’insaisissable particule

Higgs,Real Events,Experiments and Tracks
[CHANGE TO FRENCH] Candidate Higgs boson events from collisions between protons in the LHC. The top event in the CMS experiment shows a decay into two photons (dashed yellow lines and green towers). The lower event in the ATLAS experiment shows a decay into four muons (red tracks) (Image: CMS/ATLAS/CERN)

Pendant de nombreuses années, le problème a été qu’aucune expérience n’avait observé le boson de Higgs, ce qui aurait permis de confirmer la théorie. Le 4 juillet 2012, les expériences ATLAS et CMS auprès du Grand collisionneur de hadrons (LHC) ont annoncé qu'elles avaient toutes deux observé une nouvelle particule dont la masse se situait dans la région des 126 GeV.

Le 8 octobre 2013, le prix Nobel de physique a été attribué conjointement à François Englert et Peter Higgs « pour la découverte théorique du mécanisme contribuant à notre compréhension de l’origine de la masse des particules subatomiques et récemment confirmée par la découverte, par les expériences ATLAS et CMS auprès du LHC du CERN, de la particule fondamentale prédite par cette théorie ».